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ABSTRACT
Joint torque estimation is an essential aspect of the control architecture in assistive devices for 
rehabilitation and aiding movement impairments. Healthy adult torque trajectories serve as a baseline 
for controllers to determine the level of assistance required by patients, evaluate impaired motion, 
understand biomechanics, and design treatment plans. Currently, methods of torque estimation 
include inverse dynamics using gold standard motion capture systems, generic mathematical 
models based on joint torque-angle relationships, neuromusculoskeletal modelling using surface 
electromyography, and neural networks. As such, this review provides a focused overview of the 
recent and existing neural networks tailored for upper and lower limb joint torque estimation. 
Dataset preparation, data preprocessing, and evaluation metrics are presented along with a detailed 
description of the developed networks, which are classified by model architecture. It includes 
artificial neural networks (ANNs), convolution neural networks (CNNs), long short-term memory 
(LSTM) networks, and hybrid and alternate architectures such as wavelet or explainable convolution 
(XCM). The performance, benefits, and limitations of the models are discussed, highlighting CNNs 
and LSTMs as the current optimal models for time series prediction of joint torque. This is due 

to their ability to capture spatial and temporal 
dependencies in the data. Additionally, joint 
kinematics such as angles, angular velocities, 
and accelerations are considered optimal input 
parameters due to their ease of measurement 
using wearable sensors and integration with 
wearable assistive technology.

Keywords: ANN, artificial intelligence, CNN, control 
architecture, joint moments, LSTM, torque estimation
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INTRODUCTION

Addressing the challenges of ageing and movement impairment is necessary for individuals 
to maintain a good quality of life (Kruk et al., 2022). To support this, wearable assistive 
devices (such as exoskeletons or soft exosuits) are gaining significance for assisting 
impaired motion during rehabilitation or daily tasks (Liu et al., 2019; Schmidt et al., 2017). 
A key aspect of these devices is their controllers, which utilise joint torque estimation 
models to obtain a benchmark that sets and tracks the level of assistance for a patient 
(Moreira et al., 2021). Reference torque trajectories ensure adequate assistance is supplied 
to the user to complete a motion and are also important in understanding biomechanics 
and impaired movement and when evaluating the effectiveness of treatments (Perera et 
al., 2023). Hence, the progression of torque estimation methods would further assistive 
devices’ design and control architectures. Yet, deriving torque trajectories can be complex, 
requiring extensive processing techniques with calculations using mathematical or human 
biomechanical models (Siu et al., 2021; Wang & Buchanan, 2002).

Currently, four main approaches exist for torque estimation: (1) inverse dynamics 
(ID), (2) mathematical modelling, (3) neuromusculoskeletal (NMS) modelling and (4) 
neural networks (Dinovitzer et al., 2023; Liu et al., 2019; Zhang, Soselia et al., 2023). ID 
involves tracking motion kinematics and external ground reaction forces (GRFs) using 
optical motion capture (Mocap) systems and force plates or inertial measurement units 
(IMUs). The Mocap data combines approximations for body segment inertia or point 
mass utilising kinematic link segment models. Newton-Euler or Lagrange equations of 
motion are used to derive joint torques with tools such as OpenSim (Delp et al., 2007; 
Seth et al., 2018) or Visual 3D (C-Motion Inc.). Despite ID being the gold standard for 
calculating joint torques, they require expensive and bulky laboratory setups, which are not 
ideal for integrating wearable devices (Dinovitzer et al., 2023; Siu et al., 2021). Further, 
mathematical models based on a linear approximation of the joint torque-angle relationship 
can be applied for selected movements, as proposed in the exoskeleton and exosuit by Liu et 
al. (2019) and Schmidt et al. (2017), respectively. While these models are easily integrated 
into controllers, they are generic and do not account for variations in subject characteristics 
such as age, anthropometry, or movement strategies (Moreira et al., 2021; Perera et al., 
2023). Alternatively, NMS modelling (Figure 1) utilises surface electromyography (SEMG) 
signals, which measure the electric current field caused by the depolarisation of muscle 
fibres due to an action potential (Farina & Enoka, 2023). It calculates muscle activation 
via neural excitation with reference to a Hill-type muscle model (activation dynamics). 
Through contraction dynamics, muscle activation is used to determine muscle force 
(accounting for force-length/velocity relationships) and then, in conjunction with joint 
moment-arms, produces torque (Wang & Buchanan, 2002). Modelling tools like OpenSim 
with toolboxes like CEINMS (Pizzolato et al., 2015) are commonly employed for this 
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analysis. However, NMS modelling requires tedious calibration and processing techniques 
for each subject individually, while SEMG signals are inherently noisy and affected by 
muscle crosstalk, sweat, and displacement during motion. Hence, they are difficult to use 
in wearable devices for prolonged periods (Farina & Enoka, 2023; Moreira et al., 2021; 
Zhang, Soselia et al., 2023). 

Thus, neural networks have gained prominence in torque estimation to overcome the 
limitations of the previous methods (Figure 1). These networks do not require a human 
body model; they map directly from sensor input to output torque and are good at predicting 
non-linear behaviour while capturing spatial and temporal information (Li et al., 2020). 
The benefit is that neural networks can estimate each user’s dynamically varying torque 

Figure 1. (a) An overview of neuromusculoskeletal (NMS) modelling for estimating joint torques using 
electromyography (EMG) signals, a Hill-type muscle model, and OpenSim. (b) Outline of a neural network 
architecture for joint torque estimation consisting of pooled, individual, and clustered network models. 
Reprinted and modified with permission from (Zhang et al., 2023) and published under the Creative Commons 
Attribution License (CC BY 4.0)

(a)

(b)
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requirements while providing personalised trajectories based on subject characteristics such 
as age or anthropometry for more effective and natural assistance (Moreira et al., 2021). 
Deep learning models also eliminate the need for repetitive subject data collection and 
calibration or processing once trained (Mundt et al., 2021; Zhang, Soselia et al., 2022). 
However, the limitation is the black-box nature of these models, which masks the reasoning 
behind their prediction, and the relationships between input data and torque cannot be 
easily investigated. Additionally, the effectiveness of the network is highly dependent 
on the quality, quantity, and variety of training data which is necessary to ensure model 
generalisability (Siu et al., 2021; Wang & Buchanan, 2002; Zhang, Soselia et al., 2022). 

This study aims to review existing neural network approaches for estimating upper and 
lower limb joint torques. The literature referenced in this study comprises different neural 
network architectures, input parameters, preprocessing techniques, evaluation metrics, 
and joint motions. The following sections present these findings and recommendations on 
the optimal model architectures and input parameters for joint torque estimation. Future 
perspectives targeted towards wearable assistive technology are also discussed.

METHODS

PubMed and Scopus databases were searched for scientific articles involving neural 
networks that estimate upper and lower limb joint torques based on their title, abstract, 
keywords, and relevance (Figure 2). The search keywords were joint torques, joint moments, 
neural networks, deep learning, torque estimation, and torque prediction. The exclusion 

Figure 2. Number of articles identified for review on upper and lower limb joint torque estimation via 
neural networks

Records identified through 
database search

(n = 93)

Records screened
(n = 93)
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criteria were publications containing robotic joint torques, non-neural network approaches, 
articles older than the year 2000 and similar articles with repeating model architectures, 
input parameters and targeted lower or upper limb joints. 

MAJOR FINDINGS

Numerous neural networks have been proposed for torque estimation utilising a range of 
input parameters and are categorised based on their model type, as presented in Table 1. 
Artificial neural networks (ANNs) consist of fully connected layers, which form the basis 
for more complex architectures. In these dense or multi-layer perceptron networks, each 
neuron per layer is connected to every neuron in the next layer, with adjustable weights 
and multiple hidden layers (Chandrapal et al., 2011). Similarly, time delay neural networks 
(TDNNs) build on ANNs by introducing delays or convolutions to extract temporal features 
in sequential data (Peng et al., 2015). 

Convolution neural networks (CNNs) process images or grid-structured data using 
convolution and pooling operators coupled with non-linear activation functions to 
recognise spatial information effectively (Taye, 2023). Alternatively, long short-term 
memory (LSTM) neural networks are a recurrent neural network (RNN) type that can 
identify temporal features using memory cells and a gated structure comprising forget, 
input, and output gates to update cell and hidden states. LSTMs are particularly effective 
in capturing long-term dependencies and analysing time series data (Cho et al., 2014;  
Zhang, Soselia et al., 2022). Additionally, hybrid networks use a sequential combination 
of deep learning with mathematical or NMS models. Instead of directly estimating torque, 
the hybrid networks predict alternate parameters like GRFs or muscle activations, which 
are then used as inputs into mathematical (for example, ID and gravity compensation 
equations) or computational NMS models to derive torque (Lam & Vujaklija, 2021; 
Wang & Buchanan, 2002). 

Dataset Preparation and Preprocessing

Neural networks for joint torque estimation use a variety of data types and sources for 
model training and testing. Kinematic and kinetic data are obtained either through optical 
Mocap systems and force plates or through wearable sensors like IMUs, encoders, or 
electrogoniometers (Altai et al., 2023; Dinovitzer et al., 2023; Liu et al., 2009). SEMG 
data provides muscle activity linked to joint torque, typically collected from the muscles 
involved in a joint motion (Chandrapal et al., 2011). Subject anthropometry like age, weight, 
or height are also considered when creating personalised torque estimation models (Moreira 
et al., 2021). From this, diverse and large-scale datasets should be considered for training 
to account for variability in human movement, subject characteristics, and generalizability 
of the models to a subject population.
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Preprocessing of these input parameters is a vital step before model training. SEMG, 
for instance, is filtered to remove noise and rectify it, and low pass is filtered to create an 
envelope. It can be normalised using the maximum voluntary contraction (MVC). Features 
include the mean absolute value, root mean square (RMS), zero crossings, slope sign 
change, simple square integral, waveform length, myopulse percentage rate, and the mean 
or median frequencies (Chandrapal et al., 2011; Truong et al., 2023; Wang et al., 2023). 
SEMG can also be interpreted as a collection of RMS windows for real-time applications 
(Su et al., 2020) or a collection of 2D images/arrays at every sampling instant (Yu et al., 
2022). Zhang, Fragnito et al. (2022) extended this by performing a continuous wavelet 
transform and organising SEMG into matrices with scale components of frequency-domain 
information for the time sequence of the signal. It was then compared against the brightness 
mode of ultrasound images from skeletal muscles for specific regions of interest.

Moreover, Mocap data, GRFs, IMU readings, and joint kinematics are also subject to 
appropriate filtering techniques. Lowpass and bandpass filters are used to remove noise 
and motion artifacts and for smoothing where filter cut-off frequencies can be selected 
by performing a Fast Fourier Transform and observing the signal bandwidth (Crenna 
et al., 2021; Winter, 2009). GRFs provide vertical, anteroposterior, and mediolateral 
force components along with the centre of pressure (COP) or zero-moment point (ZMP) 
(Dinovitzer et al., 2023). From IMUs, body segment accelerations, angular velocities, 
positions, and sensor orientations are collected, while joint angles can also be derived (Altai 
et al., 2023; Dinovitzer et al., 2023; Molinaro et al., 2020; Mundt et al., 2020). Additionally, 
centre of mass (COM) kinematics are also considered as they are a dynamic determinant 
for segment kinetics during gait. Features such as COM apex (maximum point in sagittal 
plane), position, and velocity were utilised (Lim et al., 2019). 

All data types of the input parameters are formatted into training and testing datasets 
based on the model architecture and nature of the study. The dataset can be randomly 
split for training, validation, and testing or based on the number of subjects and trials. 
According to the study, splitting ratios can be chosen heuristically, with common ratios 
being 70–20–10 or 80–10–10 for training, validation, and testing, respectively (Mundt et 
al., 2020; Xia et al., 2020). Considering CNNs, data is presented as a collection of images/
matrices based on batch size and time structure (Hajian et al., 2021; Yu et al., 2022; Zhang, 
Fragnito et al., 2022). For other architectures, dataset rows represent time-series entries, 
and columns represent features (Su et al., 2020; Wang et al., 2023). Overall, the quantity, 
quality, and variety of training data play a significant role in model performance and the 
generalizability of the developed networks to a population outside the training sample. 
Test datasets also need to be representative of a subject population to effectively evaluate 
a neural network’s performance.
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Data may also be segmented into time-slices through windowing, which allows for 
a memory component (LSTMs) and a continuous future torque trajectory estimation by 
sliding across the windows (Liu et al., 2009; Su et al., 2020; Wang et al., 2023; Zhang, 
Soselia et al., 2022). Studies with a variety of features also employed data augmentation 
techniques such as feature scaling or normalisation (Lim et al., 2019), which is on par with 
dimensionality reduction. High dimensional datasets may incur the curse of dimensionality, 
leading to increased computational load, overfitting, and difficulties in interpretation and 
visualisation. Accordingly, techniques such as principal component analysis (PCA) reduce 
the number of features while retaining relevant information in the dataset, which enhances 
computational efficiency (Yu et al., 2022). 

Evaluation Metrics

In literature, the actual upper and lower limb torques are derived using sensors (load 
cells) or an ID approach via Mocap data (Figure 3). The Newton-Euler Equation 1 
of motion for joint torque is used and commonly computed through biomechanical 
analysis software such as OpenSim. An unseen portion of data is used for testing with 
error and correlation evaluation metrics to determine the performance of a model. It 
includes root mean square error (RMSE), normalised RMSE (NRMSE), and relative 
RMSE (RRMSE), which quantify the error between the actual and predicted joint 
torques (Siu et al., 2021). Correlation coefficients (R) such as Spearman’s or Pearson’s 
are derived and highlight the similarity in fit or trend between the actual and predicted 
torques. Pearson’s is commonly seen in literature, while Spearman’s is also applicable 
considering the monotonic relationship between predicted and actual torques (Liu et al., 
2019; Moreira et al., 2021). Additionally, the coefficient of determination (R2) measures 
how well the neural network replicated the actual torques (Truong et al., 2023). Yet, it 
is challenging to directly compare neural network performance across studies. It is due 
to varying experimental setups, test datasets, validation methods, model architectures 
(including hyperparameters) and, in some instances, the lack of standardised evaluation 
metrics (Naidu et al., 2023). Hence, establishing common benchmarks for joint torque 
prediction (such as using gold standard Mocap with an RMSE metric) is necessary to 
allow comparability of results.

RMSE metric) is necessary to allow comparability of results. 
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Neural Network Architectures

Artificial Neural Networks

Molinaro et al. (2020) developed a feedforward neural network to estimate hip torque 
using hip joint angles, thigh acceleration, and angular velocity as inputs from a single thigh 
IMU. The dataset contained five extracted features (minimum, maximum, mean, standard 
deviation and latest values) and was segmented into temporal windows of 350 ms. The 
trained network consisted of three hidden layers with 30 neurons and an exponential linear 
unit activation function. The model was trained under two conditions where the ambulation 
mode (gait or ramp ascent/descent) was known or unknown. At the same time, an early 
stop based on validation loss was implemented to prevent overfitting or underfitting. On 
average, the ANN produced an RMSE of 0.116 Nm/kg, with a 59.3% reduction compared to 

Figure 3. Training of a neural network where ground truth values are calculated using an inverse dynamics 
approach, with data from an optical motion capture system and force plates. Reprinted and modified with 
permission from (Mundt et al., 2020) and published under the Creative Commons Attribution License (CC 
BY 4.0)
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a mathematical model using a mean torque profile. The study showed that ANNs produced 
better estimates of joint torque compared to mathematical approximations and highlighted 
the need for a classifier to distinguish between the different movements. Similarly, Mundt 
et al. (2020) used IMU accelerations and angular velocities of the lower limbs (five 
sensors) to predict hip, knee, and ankle torque in all motion planes. Synthetic IMU data 
was created using optical Mocap. At the same time, their ANN had a higher complexity 
with two hidden layers consisting of 6000 and 4000 neurons, respectively, followed by 
a 40% dropout rate and 15,000 training steps. The final network had an R of 0.95 and an 
NRMSE of less than 13%.

Lim et al. (2019) used COM kinematics to predict lower body joint torques, joint angles, 
and GRF (Figure 4). A single Sacrum IMU obtained COM data, and the study investigated 
which kinematic features amongst acceleration, velocity, displacement, and time contributed 
the most to performance. Hence, models were trained using combinations of these inputs 
where the ANN had a single hidden layer with 20 neurons and a sigmoid activation function. 
COM displacement was found to be the most significant contributor, where omission of 
this input increased error by up to 3%. The hip, knee, and ankle had NRMSE percentages 
of 10.74, 9.63 and 9.24, respectively, with R greater than 0.90. Chandrapal et al. (2011) 
used SEMG from five knee flexor/extensor muscles to create a direct mapping to knee 
joint torque. The ANN consisted of a single hidden layer with five neurons, and the lowest 
average error was 10.46%. However, this network is only considered a single subject and 
may not be generalisable to other individuals.

Figure 4. An artificial neural network (ANN) architecture for predicting hip, knee, and ankle joint torques 
using the centre of mass kinematics obtained from a single Sacrum inertial measurement unit (IMU) sensor. 
Reprinted with permission from (Lim et al., 2019) and published under the Creative Commons Attribution 
License (CC BY 4.0)
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Moreover, Liu et al. (2009) proposed using GRFs to predict hip, knee, and ankle torques 
during jumping and squatting. Their ANN consisted of a single hidden layer with 10 neurons 
and a sigmoid activation function, and the input features were time histories of vertical GRF, 
vertical displacement, COM velocity, jump power, and support time. The model produced an 
R greater than 0.95 and relative percentage errors of 4.73, 2.13 and 6.33 for the hip, knee, and 

Figure 5. (a) The procedure for ankle joint torque 
prediction, and (b) the network structure for a time 
delay neural network (TDNN). Reprinted with 
permission from (Su et al., 2020) and published 
under the Creative Commons Attribution License 
(CC BY 4.0)

(a)

(b)

ankle, respectively. This study showed the 
applicability of ANNs in predicting the non-
linear relationship between GRF and torque. 
Likewise, McCabe et al. (2023) extended 
this research by including IMU data with 
GRF from insoles (wearable sensors) for 
estimating hip torque during stair ascent. 
Their model had two hidden layers, each 
with 10 neurons and a hyperbolic tangent 
(Tanh) activation function sensitive to high 
variability inputs. The trained network had 
an RRMSE of 17.8% with an R2 of 0.77.

Time Delay Neural Networks

As Su et al. (2020) presented, TDNNs 
typically consist of a fully connected ANN 
structure with a time delay (Figure 5). 
SEMG inputs are utilised as they generate 
30 to 150 ms before muscle movement or 
motion onset. This study predicted ankle 
inversion/eversion torque with input features 
being ankle angular velocity and a 100-point 
RMS moving window with a 30-sample 
overlap of the SEMG signal of five lower 
body muscles. The TDNN consisted of a 
single hidden layer with 10 neurons and 
a sigmoid activation function, resulting in 
an NRMSE of 7.9% and an R of 0.97. This 
model outperformed an ANN and a support 
vector regression (SVR) model (NRMSE of 
9.8% and 9.07%, respectively), showcasing 
its applicability to time series prediction. 
Similarly, Peng et al. (2015) developed a 
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TDNN for estimating elbow torque using joint angles, angular velocity, and a 200 ms 
moving average window of the SEMG signals from two arm muscles. The model had a 
single hidden layer with 25 neurons, producing an RMSE of 0.60. Additionally, this study 
conducted a zero-EMG test, where the SEMG signals were omitted as inputs during training. 
In this instance, torque prediction was almost zero, showing the importance of SEMG to 
this neural network architecture with a lower dependence on kinematic parameters.

Convolution Neural Networks

Moreira et al. (2021) compared the performance of a CNN and LSTM when predicting ankle 
torque during gait, tailored to the subject’s walking speed and anthropometry. The authors 
also tested non-SEMG dependent torque estimation accuracy, as SEMG sensors are affected 
by noise from muscle crosstalk, skin-electrode displacement, sweat or temperature and, 
therefore, are not ideal for long-term operation in wearable devices. Two types of models 
were trained where the first model had inputs of ankle angle, angular velocity, acceleration, 
walking speed, height, mass, foot and shank length, gender, and age. The second model had 
SEMG signals added for two shank muscles. The CNN architecture had two convolution 
layers with 8–16 filters, a 2x2 kernel size and a 25% dropout, while the LSTM had a single 
layer with 100 neurons and a 50% dropout. Overall, the CNN outperformed the LSTM, 
where NRMSE, Spearman’s R and R2 were 0.7% against 0.58%, 0.89 against 0.84 and 
0.91 against 0.79 for the CNN and LSTM, respectively. Moreover, the CNN had a faster 
prediction time of 0.51 ms/sample compared to 3.7 ms/sample for the LSTM. 

Thus, the study highlighted the importance of torque prediction, oriented towards the 
user’s anthropometry and speed, for personalised and more effective applications. The 
results showed no significant differences between CNN and LSTM models with and without 
SEMG signals as inputs. It justifies that SEMG is unnecessary for torque prediction in 
these architectures, and joint kinematics are sufficient. It is further supported by Hajian 
et al. (2021), where elbow torque was predicted using only SEMG and then SEMG with 
position and velocity from a Biodex machine. Their CNN had two convolution layers with 
16 and 64 filters, a 3x3 kernel size, followed by normalisation, rectified linear unit (ReLU) 
activation, pooling, and dense layers. Results showed improved R2 by percentages of 
2.35, 37.50 and 16.67 when SEMG and position were used, compared to only SEMG for 
isotonic, isokinetic, and dynamic movement conditions, respectively. R2 then increased by 
further percentages of 2.29, 12.2 and 20.50 when velocity was added for the same isotonic, 
isokinetic, and dynamic cases, respectively. 

Further, Zhang, Fragnito et al. (2022) evaluated the CNN performance of two models for 
ankle torque estimation, with the first using brightness mode ultrasound images of muscles 
and the second using SEMG from the shank muscles as inputs (Figure 6). It was performed 
using ultrasound transducers with similar regions of interest for both types of inputs during 
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gait. Unlike SEMG, ultrasound imaging produces a direct muscle visualisation, a high 
signal-to-noise ratio, and no explicit feature extraction is needed. Instead, a direct mapping 
to ankle torque is produced. A seven-layer convolution architecture containing conv2D and 
pooling layers with batch normalisation and ReLU activation was used. A 3x3 kernel size 
was used, with the first and second convolution layers having eight and 16 filters, followed 
by 32 filters for the rest. This study showed that CNNs utilising ultrasound imaging had 
improved performance to SEMG inputs, with a reduction in NRMSE by 37.55% and an 
increase in R2 by 20.13%. Likewise, Yu et al. (2022) also used SEMG signals as images for 

Figure 6. (a) An overview of the data collection, preprocessing, and training steps for a convolution neural 
network (CNN) using ultrasound images of muscles as inputs. (b) The developed CNN architecture with 
individual layers, where the layer output size depends on the region of interest (300 x 300 pixels) from the 
ultrasound images. Reprinted with permission from (Zhang, Fragnito et al., 2022) and published under the 
Creative Commons Attribution License (CC BY 4.0)

(a)

(b)
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predicting wrist torques. These signals were converted into 2D arrays based on electrode 
positioning to form a collection of input images at every sampling instant, while PCA 
was used for dimensionality reduction. The CNN architecture had six convolution layers 
(filter sizes were 16, 64, 64, 64, 64 and 16) with batch normalisation, ReLU and pooling 
layers, a 3×3 kernel size, and a 10% dropout. Relatively good performance was seen in 
comparison to three regressive models and a short-time Fourier transform CNN, where R 
was 0.95 and 0.96, and NRMSE was 7.9% and 6.8% for pronation/supination and flexion/
extension wrist torques, respectively.

Alternatively, for time series analysis, 1D CNNs can be used, as presented by Ozates 
et al. (2023), for hip, knee, and ankle torque prediction. Inputs were lower body and trunk 
joint angles in sagittal, coronal, and transverse planes, which can be easily measured using 
wearable sensors and remove the need for costly Mocap equipment. This model was trained 
for typically developed individuals and patients with Cerebral Palsy. The 1D-CNN had five 
convolution layers (filter sizes of 128, 128, 512, 1024 and 2048) with five kernel sizes (30, 
15, 10, 5, 3) along with flattening and 10 densely connected layers, with neurons ranging 
from 10000 to 100. Results showed NRMSE between 18.02%–13.58% and 12.55%–8.5%, 
while R was between 0.85–0.93 and 0.94–0.98 for Cerebral Palsy and typically developed 
subjects, respectively. Model performance was greater for typically developed subjects with 
lower NRMSE and higher correlation. Cerebral Palsy patients had larger gait deviations, 
which produced a more complex mapping from joint angle to torque, resulting in reduced 
performance. 

Long Short-term Memory Neural Networks

Zhang et al. (2023) presented an LSTM neural network (Figure 7) for predicting hip, knee, 
and ankle torques and compared its performance with an NMS model. Inputs were SEMG 
and joint angles taken as time slice data with a t-distributed stochastic neighbour embedding 
algorithm for dimensionality reduction. Alternatively, the NMS model was created using 
the CEINMS toolbox, which derives joint torque from SEMG. Both models were trained 
under three conditions: (1) pooled, (2) individual, and (3) clustered. Pooled data from 10 
movements was used to train a single NMS and LSTM model, while individuals used 
each subject’s data per model, and clustered training grouped similar movements together. 
Clustering was performed using K-means, and a single group included movements like 
slow, normal, and fast walking. The LSTM consisted of 50 neurons, a Tanh activation 
function, and a dense layer of 64 neurons. Overall, the LSTM showcased better performance 
than the NMS model, where NRMSE for LSTM and NMS were less than 6.7% and less 
than 19.3%, respectively. The study also found that clustering did not improve LSTM 
accuracy but did so for NMS modelling, which shows that clustered motions have similar 
coordination patterns. On par with clustering, Zhang, Soselia et al. (2022) also proposed 
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a transfer learning method where a similar LSTM was pre-trained on multiple subjects/
movements (generalised model) and then transferred its knowledge to a target subject or 
motion. The model can learn new tasks faster if it has learnt similar knowledge, notably 
with limited data. Hence, a collection of LSTMs was developed for inter- and intra-subject 
tasks, with some models trained on all 10 tasks or 10 separate LSTMs for each motion. 

Figure 7. (a) Overview of a long short-term memory (LSTM) neural network architecture for estimating hip, 
knee, and ankle joint torque. Two models were developed where (1) a uniform LSTM was trained with data 
from multiple tasks and (2) 10 separate LSTM models were trained for each task. Reprinted with permission 
from (Zhang, Soselia et al., 2022) and published under the Creative Commons Attribution License (CC BY 
4.0). (b) The gated structure of an LSTM network, with forget, input, and output gates, followed by memory 
and hidden cell states. Reprinted with permission from (Wang et al., 2023) and published under the Creative 
Commons Attribution License (CC BY 4.0)

(a)

(b)
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Overall, RMSE was less than 0.14 Nm/kg, with significant improvements in performance 
once transfer learning was implemented.

Siu et al. (2021) designed an LSTM for mapping both instantaneous and sequences of 
ankle torque from SEMG and IMU data, with comparison to an ANN, CNN, and neural 
ordinary differential equation. The input data was split into historical windows of 0.5 s 
with a 0.49 s overlap. The LSTM had a single hidden layer with 64 neurons, two dense 
layers with 16 neurons each and a leaky ReLU activation function. RMSE and R for all 
activities were 0.08 Nm/kg and 0.88 for the LSTM, in comparison to 0.10 Nm/kg and 0.80 
for the CNN. This study highlighted the superior performance of the LSTM for time series 
estimation. Similarly, Wang et al. (2023) developed a three-layer LSTM network (32, 16 
and 8 neurons) with time-sliced input data forming a 150 ms window for time domain 
features and a 128 ms window for frequency domain features. The inputs themselves were 
five SEMG signals and three joint angles (lower body) for predicting hip, knee, and ankle 
torques. The model performance was compared against a Gaussian process regression 
model, which showed NRMSE to be less than 15% and R to be greater than 0.85. Truong 
et al. (2023) also produced a two-layer stacked LSTM using a collection of input features 
extracted from SEMG to predict knee and ankle torques. Mean R2 for the knee and ankle 
torques were 94.9% and 85.44%, respectively. At the same time, the study further supported 
that LSTMs are currently the optimal architecture for time series torque prediction as they 
remember and employ temporal dependencies.

Hybrid Neural Networks

Considering joint torque estimation, hybrid networks predict alternate biomechanical 
parameters, which are then used in computational NMS or mathematical models to calculate 
torque (Figure 8). For instance, Dinovitzer et al. (2023) used joint angles, body segment 
positions, velocities, and accelerations through an ANN to generate GRF and ZMP output 
trajectories. These were then combined with joint kinematics into a dynamical mathematical 
model to derive hip, knee, and ankle torques. Parallelly, an end-to-end ANN was trained 
for comparison, with direct torque mapping from the joint kinematic inputs. The hybrid 
ANN had two hidden layers of 20 and 10 neurons and used a Tanh activation function. 

Significant differences in performance were observed for the hip and knee, but not the 
ankle, with better accuracy from the hybrid model than the end-to-end ANN, noting that 
only a small sample size (n=11) was used. The hybrid model has superior generalizability 
to varying conditions from the training data, such as when using an assistive device which 
changes subject mass distribution. As such, this model was further tested on a single subject 
wearing an exoskeleton (Indego, Parker Hannifin, USA), where R was greater than 0.84 
and 0.59 for the hybrid and end-to-end ANN, respectively. Comparably, Lam and Vujaklija 
(2021) developed a similar model where an ANN predicted GRF and COP and then derived 
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joint torque through NMS modelling. Results showed RMSE less than 0.15 Nm/kg and R 
greater than 0.70. The reasoning behind these models is to remove the need for bulky and 
costly Mocap lab equipment like force plates when performing NMS analysis. 

Schulte et al. (2022) presented a hybrid CNN-NMS model for multi-day estimation 
of knee torque. Three models were trained: (1) CNN for direct SEMG to torque mapping, 
(2) NMS modelling using SEMG (OpenSim via Gait2392 and Hill-type musculoskeletal 
models) and (3) a hybrid model where a CNN maps SEMG to muscle activation, which 
a NMS model uses to derive knee torque. The CNN architecture consisted of three 1D 
convolution layers (32 filters), batch normalisation and ReLU activation, followed by 
a single LSTM layer (64 neurons), a dense layer and dropout. Overall, the CNN model 
produced the best performance with NRMSE of 9.2%, followed by the hybrid and NMS 
models with NRMSE of 12.4% and 14.3%, respectively. Likewise, Wang and Buchanan 
(2002) also developed a hybrid ANN that maps SEMG to muscle activation, followed by 
an NMS model to estimate elbow joint torque. Their ANN contained two hidden layers (10 
and 15 neurons) and used normalised SEMG of 10 upper body muscles. At the same time, 
average relative errors for isometric flexion were 4.9% for ramping up/down to relaxation 
and 34.2% for cycles (larger error as motion differed from training data). 

Alternate Network Architectures

Apart from ANNs, CNNs, and LSTMs, alternate architectures were proposed for joint 
torque estimation that utilised combinations of these networks (Figure 9). Ardestani et 

Figure 8. Overview of a hybrid neural network consisting of data collection, preprocessing and an ANN 
to estimate ground reaction force (GRF) and centre of pressure (COP) features. It also contains a hybrid 
neuromusculoskeletal (NMS) model, which uses the predicted kinetics as inputs to computationally derive 
joint torque. Reprinted with permission from (Lam & Vujaklija, 2021) and published under the Creative 
Commons Attribution License (CC BY 4.0)
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al. (2014) used a wavelet neural network, an ANN where the hidden layer has wavelet 
activation functions (Tansig and Purlin), to consider inputs in time and frequency domains. 
These functions use a Morlet mother wavelet, and inputs were eight SEMG and two GRF 
signals. Hip, knee, and ankle torque estimation were compared between a traditional ANN 
and the wavelet network, which produced better results with NRMSE less than 10% and 
R greater than 0.94. Huang et al. (2020) employed autoencoders from SEMG for feature 

Figure 9. (a) Overview of the data collection, preprocessing and network architecture for a convolution 
neural network, InceptionTimePlus, explainable convolution (XCM), XCMplus, RNNplus and Time series 
transformer (TSTplus). Reprinted with permission from (Altai et al., 2023) and published under the Creative 
Commons Attribution License (CC BY 4.0). (b) A closed-loop controller using two non-linear autoregressive 
with exogenous input (NARX) neural networks for joint torque and angle estimation. Reprinted with 
permission from (Li et al., 2020) and published under the Creative Commons Attribution License (CC BY 4.0)

(a)

(b)
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selection and shoulder and elbow torque trajectory generation. The autoencoders had 
three hidden layers with a Tanh activation function, while this result was fed into an ANN, 
producing an RMSE of 1.38 Nm/kg and an R of 0.94.

Altai et al. (2023) further trained multiple models using IMU data to predict hip, knee, 
and ankle torques (Figure 9). The models were (1) InceptionTimePlus, (2) explainable 
convolution (XCM), (3) XCMplus, (4) RNNplus and (5) Time series transformer (TSTplus). 
InceptionTimePlus is made of 1D CNN layers, while XCM uses 2D convolutions for 
feature extraction and 1D convolutions for extracting temporal information in time 
series interactions. XCMplus builds on XCM by keeping the 2D and 1D convolutions in 
sequence, while RNNplus contains a conv1D layer with a stacked LSTM architecture. 
Finally, TSTplus uses an encoder-decoder transformer for probabilistic forecasting. 
The results showed that XCM was the optimal model with an average RMSE of 0.046 
compared to 0.064 from the other models. Moreover, Li et al. (2020) discussed using a 
non-linear autoregressive with exogenous inputs (NARX) neural network for real-time 
elbow torque estimation within a closed-loop controller. Muscle activation was derived 
from SEMG data and inputted into the network to produce joint torque. NARX consisted 
of a multi-layer feedforward network with a single hidden layer (5 neurons) and a Tansig 
activation function, which allows for highly non-linear mapping with noisy data. For the 
controller, two NARX models were implemented, where the first estimates joint torque, 
and the second uses this successively to estimate joint angle trajectories. It is run through 
a Kalman filter to create a closed-loop model, where joint angles are reused as inputs in 
the first NARX network.

DISCUSSION

This review focuses on neural networks that estimate upper and lower body joint torques for 
use with wearable technology. Torque trajectory generation is a necessary step in designing 
the control systems for assistive devices, in rehabilitation or to support impairment 
(Dinovitzer et al., 2023; Li et al., 2020; Siu et al., 2021; Wang et al., 2023). Healthy adult 
torque trajectories are a baseline for assessing impaired motion and ensuring sufficient 
assistive torque is supplied based on a patient’s requirements. This produces a natural and 
effective application of aid from assistive devices (Moreira et al., 2021; Perera et al., 2023).  

Compared to conventional methods of torque estimation (ID, mathematical and NMS 
models), neural networks offer distinct advantages which are valuable for integration with 
wearable technology. Once trained, they streamline the estimation process by directly 
mapping sensor input (for example, SEMG, GRF or IMU) to output torque while reducing 
the need for tedious modelling, calibration, and processing of data from individual subjects 
(Lim et al., 2019; Schulte et al., 2022; Wang & Buchanan, 2002). Neural networks can 
also provide personalised torque trajectories for each user based on age, anthropometry, 
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biological sex, or movement speeds. It allows for user-oriented assistive torque compared 
to generic levels of assistance from traditional methods like mathematical modelling 
(Moreira et al., 2021). Future research could expand on this by generating personalised 
torque trajectories based on movement execution strategies or styles for a more natural 
application of assistance (Perera et al., 2023). However, it is imperative to acknowledge 
the limitations of neural networks. The black box nature of these models limits the 
understanding of the relationships and estimation methods behind their torque prediction, 
while model performance is highly dependent on the quality and quantity of the training 
data (Liu et al., 2009; Siu et al., 2021). Models would also need to be re-trained when used 
for specific movement impairments or if user characteristics greatly differ from the trained 
subject data (Molinaro et al., 2020).

Existing literature, as reviewed, predicted torques with low errors - RMSE and 
NRMSE less than 1.4 Nm/kg and 15%, respectively, and strong correlation coefficients 
greater than 0.84. LSTMs produced strong instantaneous sequential torque estimates 
(Siu et al., 2021) for multiple movements through pretraining on a range of tasks and 
transferring this knowledge to a target subject (Zhang, Soselia et al., 2022). Other 
networks produce tailored torque trajectories by accounting for subject characteristics 
(Moreira et al., 2021) or through NMS modelling (Dinovitzer et al., 2023). However, 
most studies had small sample sizes (n<10, Table 1), which is statistically acceptable 
(Lim et al., 2019; Molinaro et al., 2020; Peng et al., 2015; Zhang et al., 2023) but pose 
a challenge in generalising neural networks to a population. Future studies should 
incorporate larger datasets (n>30, considering the central limit theorem) encompassing 
wide age groups, subject anthropometries, characteristics, and movement strategies to 
account for population variance (Moreira et al., 2021; Perera et al., 2023). Moreover, 
models trained to estimate torque for multiple movements suffered a drop in performance. 
Therefore, future research should investigate the applicability and real-time capability of 
training multiple models for individual motions or a single model for multiple motions. 
Training techniques incorporating clustering (grouping similar movements) or transfer 
learning (leveraging pre-trained models to expedite training for new movements) can be 
explored as possible solutions (Zhang, Soselia et al., 2022; Zhang et al., 2023). Neural 
networks for torque estimation form the mid-level control component in assistive devices 
(Liu et al., 2019). They need to work hand-in-hand with high-level controllers for motion 
classification and intention detection, which would trigger the assistive device. Future 
work should combine these systems in real-time to improve applications for multiple 
movements and form an overall control architecture (Molinaro et al., 2020). 

In the context of wearable devices, kinematic, kinetic or SEMG signals (from 
appropriate muscles) are required as inputs into the neural networks for estimating the 
targeted joint torques. Selections on model architecture (ANN, CNN, LSTM, or hybrid) 
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and data preprocessing techniques such as filtering, scaling, or normalisation also need 
to be made. With this, the dataset needs to be split for training, testing, and validation 
(for example, a 70%–20%–10% split) with appropriate test methods based on the type 
of prediction (Mundt et al., 2021). Joint torque estimation commonly follows time series 
data, where walk-forward or cross-validation methods can be used depending on sequence, 
instantaneous, or windowed outputs (Siu et al., 2021; Yu et al., 2022). Furthermore, 
hyperparameter tuning is specific to each network and dataset. While there is potential for 
reusing training parameters from a holistic perspective, their adaptability depends on the 
model architecture, inputs, outputs and data characteristics. Accordingly, larger networks 
with more hidden layers and neurons tend to produce closer torque estimations with lower 
error but also require longer computation time and resources and result in slower real-time 
operation (Ozates et al., 2023; Truong et al., 2023). 

Consideration for the optimal input parameters for joint torque estimation involves 
evaluating the biomechanical quantities used. While ID methods using Mocap and GRFs 
present the gold standard approach to torque estimation, their reliance on expensive and 
bulky laboratory equipment reduces portability and is not easily adopted by wearable 
technology (McCabe et al., 2023; Siu et al., 2021). SEMG is advantageous as it precedes 
muscle movement but faces issues due to noise, muscle crosstalk, sensor placement, 
electrode-skin displacement, sweat and temperature, making prolonged wear difficult (Su 
et al., 2020). Additionally, ultrasound muscle imaging captures detailed information for 
personalised torque estimation but produces noisy data, requires tedious preprocessing and 
is highly dependent on sensor placement (Zhang, Fragnito et al., 2022). Thus, the ideal 
inputs are kinematic parameters such as joint angles, angular velocities, and accelerations. 
These can be efficiently acquired from wearable sensors like IMUs or encoders, ensuring 
easy integration with wearable technology. Moreover, across the literature, the number of 
IMUs (wearable sensors) utilised varied, with certain studies using just a single IMU to 
accurately estimate joint torque (Lim et al., 2019; Molinaro et al., 2020). The performance 
of all networks was comparable (R>0.85 and error<20%), highlighting that the location 
of placement is a significant contributor to torque estimation compared to the number of 
sensors used (Höglund et al., 2021).

In comparison with the reviewed network architectures, CNNs and LSTMs produced 
the best overall performance for joint torque estimation. Moreira et al. (2021) stated that 
CNNs had a smaller computation time and better performance than LSTMs. However, Siu 
et al. (2021) argued that LSTMs outperform CNNs, with both studies considering SEMG 
inputs. Therefore, both architectures are deemed optimal as they capture the spatial and 
temporal dependencies when mapping inputs to output torque. They are well suited for 
time-series forecasting, incorporating time slices (sliding windows) for real-time operation 
(Wang et al., 2023; Zhang et al., 2023). Hence, an example of an architecture that could 
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be further investigated is the CNN-LSTM, which combines both models to capture spatial 
and temporal characteristics. Further research is also needed on optimal window sizes for 
real-time applications and techniques to minimise the burn-in time of LSTMs, as the first 
few values are considered for memory (Siu et al., 2021). 

CONCLUSION

The study reviewed existing literature on neural networks for upper and lower limb joint 
torque estimation, covering diverse architectures such as ANNs, TDNNs, CNNs, LSTMs, 
hybrid, wavelet, NARX, and autoencoders. From this, joint kinematics were identified 
as optimal inputs for torque estimation in wearable devices. CNNs and LSTMs are the 
current optimal models for time series estimation due to their proficiency in learning 
spatiotemporal dependencies. Future work should prioritise larger sample sizes, more 
inclusive datasets, and the development of models for real-time applications. Torque 
estimation neural networks should also work on par with motion classifiers for intention 
detection and prediction of joint torque for multiple movements.
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